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LETTER TO THE EDITOR

A new algebraic Bethe ansatz forgl(2, 1) invariant vertex
models

M P Pfannmuller† and H Frahm‡
Institut für Theoretische Physik, Universtität Hannover, D-30167 Hannover, Germany

Received 16 May 1997

Abstract. The algebraic Bethe ansatz for the integrable vertex model constructed from the four-
dimensional [b, 1

2 ] representation of the superalgebragl(2, 1) is calculated using a ferromagnetic
reference state. This Bethe ansatz was known only for the three-dimensional [1

2 ]+ representation
leading to the supersymmetrict-J model. The necessary modification of the nested algebraic
Bethe ansatz scheme and generalizations to related models are discussed.

Integrable vertex models built from low-dimensional representations of the superalgebra
gl(2, 1) have attracted considerable interest, because they allow one to construct integrable
models of interacting electrons in one spatial dimension. The most prominent example is
the supersymmetrict-J model [1–3], which is obtained from the transfer matrix of the
vertex model based on the three-dimensional fundamental [1

2]+ representation [4, 5].
The transfer matrix for vertex models built from the one parametric four-dimensional

[b, 1
2] representation leads to a model of interacting electrons, where the interaction strength

is determined by the free parameter|b| > 1
2 [6]. This model has been solved by means of

the coordinate Bethe ansatz [7–9].
The nested algebraic Bethe ansatz for the supersymmetrict-J model can start with

either the empty lattice or the fully polarized ferromagnetic state as a pseudovacuum to
construct the Bethe vectors from. Considering different possibilities to solve the nesting,
there are three sets of Bethe ansätze [4]. For the model built from the four-dimensional
[b, 1

2] representations, only two Bethe ansätze have been reported [10–12]. They start either
with the empty or the completely filled band as pseudovacuum. In addition, these two
possibilities are related by the automorphismb→−b of the algebragl(2, 1) [11].

In this letter we show that, in contrast to earlier assumptions, it is indeed possible to
find a third Bethe ansatz for this model starting from a ferromagnetic pseudovacuum§ where
every lattice site is occupied by a single electron with spin↑. It is, however, necessary to
modify the usual scheme of the nested algebraic Bethe ansatz. The resulting Bethe equations
show an interesting symmetry between the spectral parameters of the first and the second
level, which has not been observed before in an electronic system.

† E-mail address: pfannm@itp.uni-hannover.de
‡ E-mail address: frahm@itp.uni-hannover.de
§ Our notation refers to the electronic model. In [12] the authors choose the grading of the|b + 1

2 , 0, 0〉 and the
|b − 1

2 , 0, 0〉 state as fermionic and call the corresponding pseudovacuum ferromagnetic. In the electronic model
these states have to be identified with an empty and doubly occupied lattice site, respectively, and thus are clearly
not ferromagnetic.
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Before presenting our new results we have to fix some notation. The basis vectors of the
irreducible representations ofgl(2, 1) can be labelled by theu(1) chargeB, the total spin
S and thez-component of the spinSz: |B, S, Sz〉, [13, 14]. For the three-dimensional [1

2]+
representation we choose the basis|1, 0, 0〉, | 12, 1

2,− 1
2〉, | 12, 1

2,+ 1
2〉. In the t-J model these

vectors are identified with an empty site and a single electron with spin↓ or ↑. The first
state is considered as bosonic (grading 0), the latter two as fermionic (grading 1). A basis
of the four-dimensional [b, 1

2] representation is given by the vectors|b, 1
2,+ 1

2〉, |b, 1
2,− 1

2〉,
|b − 1

2, 0, 0〉, |b + 1
2, 0, 0〉. They correspond to the electronic states with a single electron

with spin↑ or ↓, a doubly occupied site and an empty site. The grading is [1, 1, 0, 0].
On the tensor product of two [1

2]+ representations the Yang–Baxter equation is solved
by theR-matrix r33:

r33(λ) = a(λ)id9+ b(λ)533. (1)

Here id9 denotes the 9× 9 identity matrix and533 is the graded permutation operator with
matrix elements(533)

i1,j1
i2,j2
= (−1)[i1][ i2]δi1,j2δi2,j1, where [x] denotes the grading of an object

x. The functionsa andb are given bya(λ) = λ/(λ+ 1) andb(λ) = 1/(λ+ 1).
On the tensor product [1

2]+ ⊗ [b, 1
2] the R-matrix R can be represented in terms of

gl(2, 1) operators. Their matrix representations can be found in the literature [13, 14]:

R(λ) = a(λ)id12+ b(λ)[−2Q̂z
3⊗ Q̂z

4− Q̂+3 ⊗ Q̂−4 − Q̂−3 ⊗ Q̂+4 + 2B̂3⊗ B̂4

+2Ŵ−3 ⊗ V̂ +4 − 2Ŵ+3 ⊗ V̂ −4 + 2V̂ −3 ⊗ Ŵ+4 − 2V̂ +3 ⊗ Ŵ−4 ]. (2)

We used the subscripts 3 and 4 to indicate which operators act in the three-dimensional
[ 1

2]+ representation and which in the four-dimensional [b, 1
2] representation. At this point

we note that the construction of anR-matrix such as (2) is possible with any irreducible
representation ofgl(2, 1) instead of the [b, 1

2] representation. ThisR-matrix is a solution
of the Yang–Baxter equation on the tensor product [1

2]+ ⊗ [ 1
2]+ ⊗ [b, 1

2]:

r33
12(λ− µ)R13(λ)R23(µ) = R23(µ)R13(λ)r

33
12(λ− µ). (3)

(Subscripts denote the spaces in which theR-matrix acts.) From theR-matrix (2) we
construct the monodromy matrix by taking matrix products in the first component of
the tensor product—the auxiliary or matrix space—and tensor products of the second
components—the quantum spaces:

T (µ)
a,α1,...,αL
b,β1,...,βL

= R(µ)a,aLαL,βL
R(µ)

aL,aL−1
αL−1,βL−1

. . . R(µ)
a3,a2
α2,β2

R(µ)
a2,b
α1,β1

(−1)
∑L

i=2([αi ]+[βi ])
∑i−1
j=1[αj ] . (4)

The additional signs are a consequence of the multiplication rule in graded tensorproducts,
which reads(A⊗ B)(v ⊗ w) = (−1)[B][v](Av)⊗ (Bw). As a consequence of equation (3)
the monodromy matrix satisfies the following Yang–Baxter equation:

r33
12(λ− µ)T13(λ)T23(µ) = T23(µ)T13(λ)r

33
12(λ− µ). (5)

Here space 3 is theL-fold tensorproduct of [b, 1
2] representations. From the monodromy

matrix the transfer matrix is obtained by taking the supertrace in the auxiliary space:
τ(µ) = ∑

a(−1)[a]T (µ)aa. The Yang–Baxter equation (5) implies that transfer matrices
with different spectral parameters commute.

To diagonalize the transfer matrixτ by means of the algebraic Bethe ansatz, we have
to find a suitable reference state to construct the Bethe vectors from. Instead of specifying
this state, as is done usually, we consider a subspaceV of theL-fold tensor product of the
[b, 1

2] representation spaces.V is spanned by the 2L vectors

|α1, . . . , αL〉 = |α1〉1⊗ · · · ⊗ |αL〉L αi = 1, 2. (6)
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Here we denote by|α〉 the vectors|1〉 = |b, 1
2,

1
2〉 (electron with spin↑) and |2〉 =

|b− 1
2, 0, 0〉 (two electrons). From the representation (2) of theR-matrix we can determine

the action of the monodromy matrix on an arbitrary vector|v〉 out of V :

T (µ)|v〉 =
(
A1,1(µ) A1,2(µ) 0
A2,1(µ) A2,2(µ) 0
C1(µ) C2(µ) D(µ)

)
|v〉. (7)

The subspaceV has several peculiar properties. It is an eigenspace of the operatorD(µ)

corresponding to the eigenvalue((µ+b− 1
2)/(µ+1))L. Furthermore, the operatorsAi,j (µ)

mapV back ontoV . For later convenience we define their restrictions ontoV according to
Ã(µ)i,j = PVAi,j (µ)PV , wherePV is the projector ontoV . In (7) the operatorsAi,j can be
replaced byÃi,j without problem. Finally, the matrix̃A itself is solution of a Yang–Baxter
equation:

r
(1)
12 (λ− µ)Ã13(λ)Ã23(µ) = Ã23(µ)Ã13(λ)r

(1)
12 (λ− µ). (8)

Herer(1)(µ) is the 4× 4 R-matrix of a model with one bosonic and one fermionic state:

r(1)(µ) = a(µ)id4+ b(µ)5BF . (9)

For thisR-matrix we have the Yang–Baxter equation:

r
(1)
12 (λ− µ)r(1)13 (λ)r

(1)
23 (µ) = r(1)23 (µ)r

(1)
13 (λ)r

(1)
12 (λ− µ). (10)

We now make the following ansatz for the eigenvectors of the transfer matrixτ(µ) =
A11(µ)− A22(µ)−D(µ):

|λ1, . . . , λn〉 = Fa1,...,an,α1,...,αLCa1(λ1) . . . Can(λn)|α1, . . . , αL〉. (11)

This ansatz differs from the usual Bethe ansatz because the reference state, on which the
creation operatorsCi act, remains indeterminate. We still have to calculate then spectral
parametersλi and the 2n × 2L amplitudesF . An ansatz of this type was first proposed in
[15] where vertex models combining different representation ofsu(3) are considered.

We can now proceed following the usual steps of a nested algebraic Bethe ansatz. From
the Yang–Baxter equation (3) we derive commutation relations for the operator valued entries
of the monodromy matrix. This allows the calculation of the action of the diagonal parts
on a Bethe vector (11). We find that a vector (11) is an eigenvector of the transfer matrix
τ , if F is an eigenvector of the second transfer matrixτ (1) and if the spectral parameters
λk, (k = 1, . . . , n), are solutions of the equations(

λk + b − s
λk + 1

)L
F b1,...,bn,β1,...,βL = τ (1)(λk)b1,...,bn,β1,...,βL

a1,...,an,α1,...,αL
F a1,...,an,α1,...,αL . (12)

Here the nested transfer matrixτ (1) corresponds to an inhomogeneous vertex model and is
defined as

τ (1)(µ)b1,...,bn,β1,...,βL
a1,...,an,α1,...,αL

= str(T (1)(µ))

= (−1)[c]Ãc,cn (µ)
β1,...,βL
α1,...,αL

r(1)(µ− λn)cn,cn−1
bn,an

. . . r(1)(µ− λ1)
c1,c
b1,a1

×(−1)
∑n−1

i=1 ([c]+[ci ])([bi ]+1)+([c]+[cn])[bn] . (13)

This transfer matrix still contains a part of the first transfer matrixτ , namely the operator
Ãc,cn (µ). The monodromy matrixT (1) corresponds to a vertex model with a two-
dimensional auxiliary space andn + L two-dimensional quantum spaces. The quantum
spaces at sitesn + 1, . . . , L + n correspond to the subspaceV . The signs imply that the
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grading of the quantum spaces at sites 1, . . . , n− 1 has been changed from [0, 1] to [1, 0].
The reason for this change is the fact that the operatorC1 is fermionic andC2 is bosonic.

Becauser(1) and Ã are intertwined by the sameR-matrix (cf (8) and (10)) we have a
Yang–Baxter equation forT (1) as well:

r
(1)
12 (λ− µ)T (1)13 (λ)T

(1)
23 (µ) = T (1)23 (µ)T

(1)
13 (λ)r

(1)
12 (λ− µ). (14)

The diagonalization of the transfer matrixτ (1) by a second Bethe ansatz is standard [16].
Choosing the following pseudovacuum

|0〉(1) =
(

1
0

)
1

⊗ · · · ⊗
(

1
0

)
n

⊗ |1, . . . ,1〉 (15)

the eigenstates ofτ (1) are parametrized by rapiditiesνj satisfying(
νj + 2b

νj + b + 1
2

)L
=

n∏
i=1

a(νj − λi) j = 1, . . . , n1. (16)

The corresponding eigenvalue is

3(1)(µ) =
n1∏
j=1

1

a(νj − µ)
[(
µ+ 2b

µ+ 1

)L
−

n∏
i=1

a(µ− λi)
(
µ+ b + 1

2

µ+ 1

)L]
. (17)

Note that in (15) the vector|1, . . . ,1〉 from the subspaceV corresponds to the state where
every lattice site is occupied by a single spin↑ electron. This shows that the Bethe ansatz
starts with a ferromagnetic reference state.

Inserting expression (17) into (12) leads to the Bethe equations for the spectral
parametersλk:(

λk + b − 1
2

λk + 2b

)L
=

n1∏
j=1

1

a(νj − λk) k = 1, . . . , n. (18)

Finally, the eigenvalues of the transfer matrixτ are

3[ 1
2 ]+,[b, 1

2 ](µ) = −
(
µ+ b − 1

2

µ+ 1

)L
n∏
i=1

1

a(µ− λi) +
n∏
i=1

1

a(µ− λi)3
(1)(µ). (19)

In the electronic model the numbersn andn1 are related to the number of electronsNe and
z-component of the spinSz of the corresponding Bethe vector according to

Ne = L− n+ n1 Sz = 1
2(L− n− n1). (20)

From a fusion of twoR[ 1
2 ]+,[b, 1

2 ] matrices we can obtain theR-matrix with a four-dimensional
[ 3

2,
1
2] representation in the auxiliary space [10, 11]. For the eigenvalues of the corresponding

transfer matrix we have the relation:

3[ 1
2 ]+,[b, 1

2 ](µ+ 1
2)3

[ 1
2 ]+,[b, 1

2 ](µ− 1
2) = 3[1]+,[b, 1

2 ](µ)+3[ 3
2 ,

1
2 ],[b, 1

2 ](µ). (21)

In contrast to the Bethe ansätze presented in [10, 11], the different parts of the left-hand
side of this equation can be assigned to3[ 3

2 ,
1
2 ],[b, 1

2 ] and 3[1]+,[b, 1
2 ] without ambiguities.

This allows to determine the eigenvalues3[ 3
2 ,

1
2 ],[b, 1

2 ](µ). Using the analytic properties
of the eigenvalues together with the Bethe equations we obtain the general expression
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3[b1,
1
2 ],[b2,

1
2 ](µ) for the eigenvalues of the transfer matrix with a [b1,

1
2] representation in

the auxiliary space and a [b2,
1
2] representation in the quantum space:

3[b1,
1
2 ],[b2,

1
2 ](µ) = −

(
µ+ 1

2(b1+ b2)+ 1
2

µ− 1
2(b1+ b2)− 1

2

)L
n∏
i=1

µ+ iλi − 1
2b1− 1

4

µ+ iλi + 1
2b1+ 1

4

n1∏
j=1

µ+ iνj + 1
2b1− 1

4

µ+ iνj − 1
2b1+ 1

4

−
(

µ− 1
2b1+ 1

2b2

µ− 1
2(b1+ b2)− 1

2

µ+ 1
2(b1)− 1

2(b2)

µ− 1
2(b1+ b2)+ 1

2

)L

×
n∏
i=1

µ+ iλi − 1
2b1+ 3

4

µ+ iλi + 1
2b1+ 1

4

n1∏
j=1

µ+ iνj + 1
2b1+ 3

4

µ+ iνj − 1
2b1+ 1

4

+
(
µ+ 1

2(b1+ b2)+ 1
2

µ− 1
2(b1+ b2)− 1

2

µ− 1
2b1+ 1

2b2

µ− 1
2(b1+ b2)+ 1

2

)L

×
n∏
i=1

µ+ iλi − 1
2b1+ 3

4

µ+ iλi + 1
2b1+ 1

4

n1∏
j=1

µ+ iνj + 1
2b1− 1

4

µ+ iνj − 1
2b1+ 1

4

+
(

µ+ 1
2b1− 1

2b2

µ− 1
2(b1+ b2)− 1

2

)L
n∏
i=1

µ+ iλi − 1
2b1− 1

4

µ+ iλi + 1
2b1+ 1

4

n1∏
j=1

µ+ iνj + 1
2b1+ 3

4

µ+ iνj − 1
2b1+ 1

4

.

(22)

To use theR-matrix R44 of [11] we have added an overall factor(
µ+ 3

2

µ+ 2b + 3
2

µ+ 1
2

µ+ 2b + 1
2

)L
and replacedµ→ −µ − 3

2b − 1
4, λi → +iλi − 3

2b + 1
4, νj → +iνj − 3

2b − 1
4. The Bethe

equations read(
λk + i(c + 1)/2c

λk − i(c + 1)/2c

)L
=

n1∏
j=1

λk − νj + i 1
2

λk − νj − i 1
2

k = 1, . . . , n (23)

(
νj − i/2c

νj + i/2c

)L
=

n∏
i=1

νj − λi + i 1
2

νj − λi − i 1
2

j = 1, . . . , n1 (24)

where we used the notationc = 1/(b2 − 1
2). For the model of electrons with correlated

hopping in the notation of [9] this leads to the energies

E = −c + 1

c2

n∑
k=1

1

λ2
k + ((c + 1)/2c)2

+ 1

c2

n∑
j=1

1

ν2
j + (1/2c)2

+ 2Ne− 2L. (25)

In addition to real solutionsλk andνj of the Bethe equations (23) and (24), we have string
solutions of the following structure. Forc > 0, m spectral parametersλm,j (j = 1, . . . , m)
andm−1 spectral parametersνm−1,k (k = 1, . . . , m−1) form one complex string solution:

λm,j = λm + 1
2i(n+ 1− 2j) j = 1, . . . , m (26)

νm−1,k = λm + 1
2i(n− 2k) k = 1, . . . , m− 1. (27)

Similarly, for c < 0 we have strings combiningm − 1 spectral parametersλm−1,j andm
spectral parametersνm,k.
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Before closing we would like to add a few comments. Looking at the Bethe
equations (23) and (24), the usual distinction between first level and nesting is not obvious.
In both we find terms to the powerL on the left-hand side. In practice, this fact allows
the numbern1 of spectral parameters in the nesting to exceed the numbern of spectral
parameters in the first level. Physically, this situation is easily understandable. Forn1 = 0
there are onlyn holes in the ferromagnetic reference state, forn = 0 we haven1 spin ↓
electrons moving in front of the fully polarized background of spin↑ electrons. In the limit
b = 1

2(c = ∞) we recover the Bethe equations for the supersymmetrict-J model derived
by Essler and Korepin [4].

It should be noted, that a second Bethe ansatz can be obtained by choosing the pseudo

vacuum|0〉(1) =
(

0
1

)
1

⊗· · ·⊗
(

0
1

)
n

⊗|2, . . . ,2〉 instead of (15) in the nesting. This leads

to the known results from [10, 11].
As we have pointed out, theR-matrix (2) can be defined for an arbitrary irreducible

representation ofgl(2, 1) in the quantum space. The Bethe ansatz corresponding to the
transfer matrix with a [12]+ representation in the auxiliary space and a 8s-dimensional [b, s]
representation in the quantum space can be calculated along similar lines.

An interesting possibility is the combination of different representations ofgl(2, 1) in
one transfer matrix. The case of an impurity with a [b, 1

2] representation in thet-J model
was considered in [17]. There the Bethe equations with the completely filled band of spin↑
electrons as reference state were obtained by a particle–hole transformation. These equations
can now be rederived by means of the algebraic Bethe ansatz. Remarkably, the impurity
becomes visible only in the second set of Bethe equations.

We hope that the method of a modified algebraic Bethe ansatz for supersymmetric
gl(2, 1) invariant vertex models presented in this letter is useful for the diagonalization of
other systems, where the standard scheme has failed due to the lack of a suitable reference
state.

This work has been supported in part by the Deutsche Forschungsgemeinschaft under grant
No Fr 737/2-2.
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